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Abstract

The paper is concerned with the robustness investigation of some measures of the
distance between two statistical populations. Three different distance measures are
examined: the Kullback Leibler divergence (a special case of which is the Mahalanobis
distance), the Hellinger distance and the Bhattacharyya distance.

The definitions and the basic notions connected with the given distances are
presented. In particular, the formulae of the distances for the normal populations are
stressed.

Using the simulation methods, the robustness of each of the above mentioned
distances to departure from normality is studied. For this purpose, a Monte Carlo,
method is employed to evaluate the values of the distance measures for two
populations distributed according to the exponential density or the non-central
Student density with n freedom degrees. The Student distribution is treated as the
approximating distribution of the normal one. The values of the distances evaluated
for populations distributed according to the non-central Student densities (with
decreasing freedom degrees) are compared with the theoretical values, evaluated from
formulae valid for the normal populations.

1. Distance measures between statistical populations

Mahalanobis (1936) introduced the notion of a distance between two popula-

tions. Let IT; and IT, be two populations characterized by the multivarate normal
distributions with a common covariance matrix, ie. IT; ~ N(m;,X) and
Iy ~ N(my, ). Then the Mahalanobis distance between the populations IT; and

I1, may be expressed as follows
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A=(m; -my)"=(m; -m,) . 1.1)

Kullback and Leibler (1951) introduced a measure of divergence between
statistical populations, defined in terms of the measure of information, called
simply "divergence". Let two multivariate populations I1; and IT, have the re-

spective probability densities f;(x;, x,..., xp) and fo(x,%g,...,X,) which are equival-
ent, i.e.

fAfl(xl’xZ»---’xp) =i <1’fAfz(9Cl, %2500, %) = 0

for any A € B (R”). Then the divergence between IT; and II, was defined by
Kullback and Leibler in the following form

f1(x)
fa(x)

J(1,2) = fRP [ f1(x) - f5(x)] log dx , (1.2)
where X = (xy,..., x,).

In the case of the normal populations (when II; ~ N(m;,¥;) and
IT; ~ N(my, X)), the divergence formula is expressed by

1 o5 o 1 3 "
J(1,2) = GTrlE; - Zp)@ - 1)1 + 50m; - my) &' + ) (my -my) . (1.3)
In the particular case, when X; =X, =X, the J(1,2) becomes

J(1,2) = (m; - my)" X (m, - m,) . (1.4)

Comparing (1.1) and (1.4) we can notice that the Mahalanobis distance is a special
case of the Kullback-Leibler divergence for normal populations with the common
covariance matrix.

Besides the notion of divergence, there are some other distance measures,
among them the Bhattacharyya and Hellinger distances (Bhattacharyya 1943,
Kailath 1967, Kobayashi 1970, Beran 1977). Let the so-called Bhattacharyya
coefficient be defined as

p(1.2) =[ ,[Aix) - folm)] dx . (1.5)

Then the Bhattacharyya and Hellinger distances have the forms, respectively.
B(1,2) =-In p(1y2) P (1.6)
H(1,2) =v1-p(1,2) . (1570

Simple calculations for the normal case lead to the formula
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1 det a i
B(1,2)—2ln( detzl_detzz)+8(m1—m2) m-my), (18

where X = %(}‘..1 +3,) . Of course, from (1.6) and (1.7) it follows that

p(1,2) =772

and

H(1,2)=V1 -eB12) | (1.9)

In the particular case when X; =X, =3, we obtain

B(L,2) = £(m, - my)" =™ (m, - mg) = T(1,2)

For any case, there is

B(1,2) < % J(1,2) .

2. Monte Carlo approaches to studying the distance
measures robustness

According to Kullback (1952), the notion of divergence enables one to find the
"best" linear function for discriminating between two normal populations IT; and
[T, without limitation to the case of equal covariance matrices. The "best" linear
function is found by maximizing the divergence between the distributions of a
linear discriminant function.

Several authors, for example, Hopkins and Clay (1963), Holloway and Dunn
(1967), Koichi (1969) investigated the effect of departure from normality for

Hotteling’s T? statistics which is closely related to the Mahalanobis distance.
Everitt (1979) applied a Monte Carlo investigation of the effect of departures
from normality upon one- and two-sample T2 tests. The multivariate distributions
he used were: multivariate normal, uniform, exponential and lognormal distribu-
tion.

Johnson et al. (1979) investigated the robustness of Fisher’s linear discrimi-
nant function to departures from the normal distribution. The Johnson system
of distributions was used in their study. This suggested to me that I could apply
the z-Student distribution to measure the departure from normality. _

Both the cited papers (Everitt 1979, Johnson et al. 1979) are the starting point
for my investigations. The aim is to study the effect of departure from normality
for divergence, the Bhattacharyya and Hellinger distances, by means of Monte
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Carlo methods. For this purpose, the formulae of the Kullback-Leibler divergence
and the Bhattacharyya coefficient have to be presented in the form giving an

easy way of estimating their values for a large number of Monte Carlo trials. We
have

fi(x) fix) () iy
Fa®) S e A i =
A A,
") Beline o)l

where the random variable X has the distribution with the p-variate density f;
and Y with the p-variate density f,. Similarly we can write

f1x) dx f(Y)
fax ) f(Y)

where the random variable Y is distributed according to the density f.

p(L2) = [, [fix) - fox)] “dx = = [ =) [g Tdx = By (22017

Using N trials when generating p-variate random numbers distributed ac-
cording to the densities f; and f,, we can easily calculate the expressions

N
oy 130 A
. NE1 ix) NEl 2e2) o
"N E o Rl

where x; (i=1,2,...,N) are the random values generated from the distribution fi
and y; (:=1,2,...,N) are the random values generated from the distribution f,.
According to (1.6) and (1.7) we obtain

B =-Inp, 2.3)
H=vi-p . 2.4)

We assume, similarly as in the cited articles (Everitt 1979, Johnson et al.
1979), that in multivariate cases each of the p variables is generated inde-
pendently and from the same distribution. Without loss of generality we shall
show, for simplicity, the effects for one variable only.

First of all, we use the normal distribution to check the adequacy of the random
number generator used in the study. As an example we take some pairs of the
univariate normal distributions with various standard deviations. The results
are contained in the Table 1.
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One can see that the values o ; H and B obtained by means of the Monte

Carlo method are not far from the exact values J, H, B calculated from the
theoretical formulae (1.3), (1.8) and (1.9) valid for normal distributions.

Table 1
The comparison between the exact and the estimated values of the
Kullback-Leibler divergence, the Hellinger distance and the Bhattacharyya
distance (N = 10000 trials)

my | mg | o7 | o9 &k Ll H a B B
2 7 | 1.0 ] 1 |2500 |[25.06 |0.978 [0.977 |3.125 [3.109
2 7 | 1.5 | 1 |18.40 |18.51 |0.927 [0.930 [1.965 |2.007
2 7 | 20 | 1 |16.75 |16.89 |0.862 [0.870 |1.361 |1.415
2 7 | 25| 1 |16.71 |16.81 |0.806 [0.812 |1.048 |1.074
2 7 | 30| 1 |17.44 |17.21 [0.765 |0.765 [0.880 |0.880
2 7 | 40 | 1 |20.31 |20.20 [0.725 [0.723 [0.745 |0.739
Legend:

J, B, H — the exact values of the Kullback-Leibler divergence, the Bhattacharyya
distance and the Hellinger distance, evaluated for two normal distributions
N(my,01) and N(mg,09) according to the formulae (1.3), (1.8) and (1.9).

J : B, H — the estimated values of JJ, B and H obtained by means of the Monte Carlo
method according to the formulae (2.1), (2.3) and (2.4).

We also use the exponential distribution with distinct values of the parameter
A. For that distribution, the exact values of divergence and the distances can
easily be obtained from the respective integrals. The percentages of differences
between the true values of the distances and those calculated from the formulae
valid for the normal distributions are shown in the Table 2.

One can see from the Table 2 that the influence of the departures from
normality for the exponential distribution is the greatest in the case of the
divergence and the least — in the case of the Hellinger distance.

3. Application of ¢-Student distribution for
measuring the departure from normality

There are two reasons for using Monte Carlo methods to estimate any dis-
tances. First, only for a small number of densities the integrals (1.2) and (1.5)
expressing the divergence and the Bhattacharyya coefficient can be evaluated
analytically. Second, we do not know very often the exact distribution of the data
which we elaborate and for which we use the procedures derived and valid under
normality assumption. Here is the reason why we are interested in the study of
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Table 2
The percentages of differences between the true (exact and estimated) and
theoretical values of the Kullback-Leibler divergence, the Hellinger distance and
the Bhattacharyya distance (N = 10000 trials)

M| A | d I e lihoanse IiG“‘ijs—_Jl - 100% I‘]—G“—“f}s—ﬂ -100%
1 | 10 [8.100 [7.903 [89.910 1010.00 1037.67
2 9 |2.722 |2.731 [15.577 472.26 470.38
3 8 |1.042 |1.026 | 4.210 304.03 310.33
4 7 |0.321 |0.319 | 1.068 232.71 234.80
5 6 |0.033 [0.035 | 0.101 206.06 188.57
M Ao H ﬁ[ Hiauss 'HGauss = Hl - 100% IHGauss i I{| 100%
H i
1 | 10 [0.652 [0.653 | 0.797 2924 | 22.05
2 9 |0.478 [0.481 | 0.661 38.28 37.42
3 8 |0.331 [0.320 | 0.506 52.87 58.13
4 7 0195 |0.185 | 0.322 65.13 74.05
5 6 |0.064 |0.063 | 0.111 73.44 76.19
Mo A B B bolBads 1BGauss ~ B| | 100% M—L 100%
B B
1 | 10 |0.554 [0.556 | 1.010 82.31 81.65
2 9 |0.260 [0.263 | 0.574 120.77 118.25
3 8 |0.116 |0.108 | 0.295 154.31 173.15
4 7 10.039 |0.085 | 0.109 179.49 211.43
5 6 |0.004 [0.004 | 0.012 200.00 200.00
Legend:

J, B, H — the exact values of the Kullback-Leibler divergence, the Bhattacharyya
distance and Hellinger distance evaluated for two exponential distributions
with parameters A; and Ay according to the formulae (1.2), (1.6) and (1.7).

J, E, H — the estimated values ofJ, B and H obtained by means of the Monte Carlo
method according to the formulae (2.1),(2.3) and (2.4).

JGausss BGauss» HGauss — the theoretical values of the Kullback-Leibler divergence, the

Battacharyya distance and the Hellinger distance evaluated from the formulae
(1.3), (1.8) and (1.9) under assumption that the populations are Gaussian
N()\'la)"l) and N(}‘Q’)"Z)

the effect of departure from normality. The basic question arises how to approach
the problem of departure from normality. ]

We try to approximate the normal distribution N(m,o) by means of the
t-Student distribution with n freedom degrees. It can easily be verified that the
density function of the form
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I n+1l 3 et
5] el
o(n - 2) F(E) F(E)

glx; m,o,n) =

is pointwise convergent to the density function of the normal distribution
N(m,o) when n tends to infinity. Instead of studying the distances between two
normal distributions with the densities f;(x) ~ N(m,0;) and fa(x) ~ N(m,,05) we
have replaced them by the approximating density functions g(x; m,04,n) and
8(x; mg,09,n). We have caused the departure from normality by decreasing the
freedom degrees n in the approximating densities. The results of such a departure
from normality induced on the studied distances are summarized in Tables 3,4
and 5.

It follows from the Table 3 that the divergence changes considerably with
decreasing the freedom degrees. Thus the divergence is very sensitive to small
departures from normality.

The Table 4 shows, in comparison with the Table 3, that the Hellinger distance
seems to be much more robust to decreasing the freedom degrees than the
divergence.

Table 3
The percentages of differences between the true (estimated) and theoretical values
of the Kullback-Leibler divergence (N = 10000 trials)

my | mg| 01 | O2 n J JGauss |J—(}L}Egﬂ':l()()(7cJ
300 15.89 | 16.75 5.39
200 15.49 | 16.75 8.16
100 14.65 | 16.75 14.33
50 13.48 | 16.75 24.27
2| 12.97 | 16.75 29.18
30 12.14 | 16.75 38.02
20 1130 | 16.75 48.25
10 9.60 | 16.75 74.42
4 8.43 | 16.75 98.59

Legend:

J — the estimated values of the Kullback-Leibler divergence evaluated for two
populations with density functions g(x; mq,01,n) and g(x; mg,09,n) according to
the formula (2.1).

JGauss — the theoretical values of the divergence evaluated from (1.3) under

y assumption that the populations are Gaussian N(m1,01) and N(m4,09).
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Table 4
The percentages of differences between the true (estimated) and theoretical values
of the Hellinger distance (N = 10000 trials)

mi|mg|o;|og| n B |Hgauss @’}s[ﬁ 100%
300 [0.869 |0.862 0.79
200 |0.858 |0.862 0.47
100 |0.861 |0.862 0.11
50 [0.864 |0.862 QN2
2 7 1 2 40 |0.868 |0.862 0.65
30 |0.854 |0.862 0.96
20 |0.860 |[0.862 0.33
10 |0.844 |0.862 2.22
4 |0.857 [0.862 0.60

Legend:

H —the estimated values of the Hellinger distance evaluated for two populations with
density functions g(x; m1,01,n) and g(x; mg,09,n) according to the formula (2.4).

Hgauss — the theoretical values of the Hellinger distance evaluated from (1.9) under

assumption that the populations are Gaussian distributed: N(m;,0;) and
N(mg,09).

Table 5
The percentages of differences between the true (estimated) and theoretical values
of the Bhattacharyya distance (N = 10000 trials)

my|mg| O] |0Cg| n B B @Eéﬂ 100%
300 |1.409 |1.362 3.37
200 [1.335 |1.362 1.98
100 |[1.355 |1.362 0.47
50 [1.369 |1.362 0.53
2| 7|1 2] 40 |[1.400 |1.362 2.76
30 |1.308 |1.362 4.09
20 [1.343 |1.362 1.41
10 |1.244 |1.362 9.45
4 |1.327 [1.362 2.58

Legend:

B —the estimated values ot the Bhattacharyya distance evaluated for two populations
with density functions g(x; mq,01,n) and g(x; mg,09,n) according to (2.3).

Bgauss — the theoretical values of the Bhattacharyya distance evaluated from (1.8)
under assumption that the populations are Gaussian N(m,0;) and N(mg,09).
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One can easily see from the Table 5 that the Bhattacharyya distance is more
robust to decreasing the freedom degrees than the divergence although not so
robust as the Hellinger distance.

On the basis of the results obtained, we conclude that all the statistical
procedures based on the divergence are not robust. A statistical procedure is
called robust if it is insensitive to departures from assumptions on which the
theoretical model is based. Statistical procedures employing the divergence could
not be called robust in the above mentioned sense. Statistical procedures using
the Hellinger distance seem to be the most robust.

4. Graphical illustrations of the distance measures
sensitivity

The reason of the high sensitivity of the divergence to small deviations from
normality can be explained graphically.

Let us denote by A ;the difference between the theoretical and the exact values
of the divergence

Ay= JGauss = JS =9

i - fil®) &1(x)
_fR [fl(x) = f2(x)] In fz(x) ga(x)
- {16 - o B 1160 - s £ e -
=fR h(x, ml’ol’m2’02’n) dx
where
filx) 1)

s mas01mgopn) = ) - fo) I S~ [ - gyl mES @
and |
fi) ~ Nemyo)
Fo) ~ Nimy,0)
1) = glos my,01,m)
8ax) = glx; my,09,n)

with g(x; -, -, - ) defined in (3.1).
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The plots of the function h(x; m1,61,m,09,n) expressed in (4.1) for distinct n
and for m; = 2, 0; = 1, my =7, 0y = 2 are shown in Figure 1. The areas below the

plots express differences between exact and theoretical values of the divergence.
Analogous functions can be drawn for the Bhattacharyya coefficient (1.5) used
for constructing the Hellinger and Bhattacharyya distances according to the
formulae (1.7) and (1.6).
Let Ag be the difference between the theoretical and. f;he exact values of the
Bhattacharyya coefficient. We have

Ag = PGauss = Ps = >

= [, 1h@ - )l de - Tg1x) - gy e =
=[ {11 e - lg1x) - gae)]* | e =

=fR k(x; mq,01,m4,09,n) dx

where
k(ee; my,01,m,00,0) = [fi@) - )] - [g10) - g20)]*  (4.2)
and
' fi®) ~ Nmy,01)

fa®) ~ N(my0,)

81(x) = glx; my,0,n) ,

85(x) = g(x; my,09,1)
with g(x; -, -, - ) defined in (3.1).

The plots of the function k(x; m,,0,m4,09,n) defined in (4.2) are drawn for
distinet n and for m; = 2, 0y = 1, my = 7, 05 = 2 (see Figure 2). They show a much
less amplitude. '

Our final conclusion is that the Hellinger distance is much better for robust
procedures than the divergence.
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0.5
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Figure 1. Plots of the function A(x; m,,0,,m4,04,n) for various n. The areas
below the plots express differences between the theoretical and exact values
of the divergence (n — freedom degrees of the ¢-Student distribution).
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0.015 —

-0.01 —

Figure 2. Plots of the function k(x; m,0,,m4,04,n) for various n. The areas

below the plots express differences between the theoretical and exact values
of the Bhattacharyya coeficient (n — freedom degrees of the ¢-Student distribu-
tion).

v
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Miary odleglosci pomiedzy populacjami — symulacyjne
badanie ich odpornosci

Praca zawiera wyniki badan symulacyjnych wybranych miar odlegloéci pomiedzy
dwiema statystycznymi populacjami. Przedmiotem badania jest odpornoéé tych miar
na odchylenia rozkladu populacji od rozkltadu normalnego. Uwzgledniono nastepujace
miary: dywergencja Kullbacka-Leiblera, odlegloéé Hellingera oraz odleglosé
Bhattacharyya.

W pracy podano definicje powyzszych miar ze szczegélnym uwzglednieniem formut
stosowanych w przypadku populacji o rozkladach normalnych.

Do badania wykorzystano metode Monte Carlo szacowania wartoéci poszczegélnych
miar odlegloSci dla populacji o dowolnych rozkladach. W szczegélnoéci wzieto pod
uwage dwa nastepujace typy rozkladéw: rozklad wykladniczy oraz niecentralny
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rozklad Studenta. Ten ostatni wykorzystano do aproksymowania rozkladu normalnego
o zadanych parametrach. Liczba stopni swobody rozkladu aproksymujacego zostata
potraktowana jako miara odejscia od rozktadu normalnego.

Badanie odpornoéci oparto na obliczeniu wzglednych réznic pomiedzy warto$ciami
teoretycznymi, wyznaczonymi przy zalozeniu normalnogci rozktadu badanych
populacji, a wartoéciami faktycznymi oszacowanymi dla populacji o zadanych

. rozkltadach.

Slowa kluczowe: miary odlegloci, odpornosé, odejécie od rozkladu normalnego,
metody Monte Carlo



